Datasets & Online Resources

Numista Coin Catalog

Comprehensive database of world coins with detailed information and images.

Visit Resource →

Wikidata: Liao Huanxing

Structured data entry for Chinese artist Liao Huanxing (Q136450200).

View Entry →

Dekoloniale Memory Culture

Project documenting colonial memory culture in urban spaces.

Explore Project →

Wikidata Query Service

Tool for querying and visualizing structured data from Wikidata.

Use Tool →

Wikimedia Commons

Repository of freely usable media files with structured metadata.

Browse Media →

E-commerce Transaction Dataset

Transactional dataset from an e-commerce application (Pratama, 2023).

Access Dataset →

Academic References

  • 1

    Ackoff, R. L. (1989). From Data to Wisdom. Journal of Applied Systems Analysis, 16, 3–9.

  • 2

    Acker, A. (2021). Metadata. In N. B. Thylstrup, D. Agostinho, A. Ring, C. D'Ignazio, & K. Veel (Eds.), Uncertain Archives: Critical Keywords for Big Data (pp. 321–329). The MIT Press.

  • 3

    Bowker, G. C., & Star, S. L. (2000). Sorting Things Out: Classification and Its Consequences. MIT Press.

  • 4

    boyd, d., & Crawford, K. (2012). Critical questions for Big Data. Information, Communication & Society, 15(5), 662–679.

  • 5

    Carroll, S. R., Herczog, E., Hudson, M., Russell, K., & Stall, S. (2021). Operationalizing the CARE and FAIR Principles for Indigenous Data Futures. Scientific Data, 8(1), 108.

  • 6

    Clausen, B., Engel, D., & Wharton, G. (2023). Capturing Narrative and Data in Performance Art: The Joan Jonas Knowledge Base. In T. Gusman (Ed.), Reconstructing Performance Art: Practices of Historicisation, Documentation and Representation (pp. 155–172). Routledge.

  • 7

    Crawford, K., & Paglen, T. (2021). Excavating AI: The politics of images in machine learning sets. AI & Society, 1105-1116.

  • 8

    Cui, W. (2019). Visual Analytics: A Comprehensive Overview. IEEE Access, 7, 81555–81573.

  • 9

    Dalton, C., & Thatcher, J. (2014). What Does a Critical Data Studies Look like, and Why Do We Care? Seven Points for a Critical Approach to 'Big Data'. Society and Space.

  • 10

    Das, S., & Lowe, M. (2018). Nature Read in Black and White: Decolonial Approaches to Interpreting Natural History Collections. Journal of Natural Science Collections, 4–14.

  • 11

    Day, S. (2023). Visualising humanities data. In J. O'Sullivan (Ed.), The Bloomsbury Handbook to the Digital Humanities (pp. 211-219). Bloomsbury Publishing.

  • 12

    D'Ignazio, C., & Klein, L. F. (2020). Data Feminism. MIT Press.

  • 13

    Dörk, M., Feng, P., Collins, C., & Carpendale, S. (2013). Critical InfoVis: Exploring the Politics of Visualization. In CHI '13 Extended Abstracts on Human Factors in Computing Systems (pp. 2189–2198). ACM.

  • 14

    Dourish, P. (2017). Spreadsheets and Spreadsheet Events in Organizational Life. In The Stuff of Bits: An Essay on the Materialities of Information (pp. 81–104). The MIT Press.

  • 15

    Drucker, J. (2011). Humanities Approaches to Graphical Display. Digital Humanities Quarterly, 5(1).

  • 16

    Flyverbom, M., & Murray, J. (2018). Datastructuring—Organizing and Curating Digital Traces into Action. Big Data & Society, 5(2).

  • 17

    Ford, H., & Illadis, A. (2023). Wikidata as semantic infrastructure. Social Media + Society, 9(3).

  • 18

    Gitelman, L., & Jackson, V. (2013). Introduction. In "Raw Data" Is an Oxymoron (pp. 1–12). The MIT Press.

  • 19

    Hullman, J., & Diakopoulos, N. (2011). Visualization Rhetoric: Framing Effects in Narrative Visualization. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2231–2240.

  • 20

    Illadis, A., & Russo, F. (2016). Critical Data Studies: An introduction. Big Data & Society, 3(2).

  • 21

    Indigenous Archives Collective. (2021). The Indigenous Archives Collective Position Statement on the Right of Reply to Indigenous Knowledges and Information Held in Archives. Archives & Manuscripts, 49(3), 244–252.

  • 22

    Jeppesen, S., & Sartoretto, P. (2023). Cartographies of Resistance: Counter-Data Mapping as the New Frontier of Digital Media Activism. Media and Communication, 11(1), 150–162.

  • 23

    Jordon, J., Szpruch, L., Houssiau, F., Bottarelli, M., Cherubin, G., Maple, C., Cohen, S. N., & Weller, A. (2022). Synthetic Data—What, why and how? arXiv. https://doi.org/10.48550/arXiv.2205.03257

  • 24

    Kitchin, R. (2022). The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences. SAGE Publications Ltd.

  • 25

    Larsson, Å. M., Bornsäter, B., & Hacke, M. (2025). Developing Practices for FAIR and Linked Data in Heritage Science. Npj Heritage Science, 13(1), 53.

  • 26

    Loukissas, Y. A. (2019). A Place for Plant Data. In All Data Are Local: Thinking Critically in a Data-Driven Society. MIT Press.

  • 27

    Milano, S., Taddeo, M., & Floridi, L. (2020). Recommender Systems and Their Ethical Challenges. AI & Society, 35(4), 957–967.

  • 28

    Nadim, T. (2021). The Datafication of Nature: Data Formations and New Scales in Natural History. Journal of the Royal Anthropological Institute, 27(S1), 62–75.

  • 29

    Rowley, J. (2007). The wisdom hierarchy: Representations of the DIKW hierarchy. Journal of Information Science.

  • 30

    Rusert, B., & Battle-Baptiste, W. (Eds.). (2018). W. E. B. Du Bois's Data Portraits: Visualizing Black America. Princeton Architectural Press.

  • 31

    Saunavaara, J., Laine, A., & Salo, M. (2022). The Nordic societies and the development of the data centre industry: Digital transformation meets infrastructural and industrial inheritance. Technology in Society, 69, 101931.

  • 32

    Seaver, N. (2022). Computing Taste: Algorithms and the Makers of Music Recommendation. University of Chicago Press.

  • 33

    Sluis, K. (2017). Accumulate, Aggregate, Destroy. Database Fever and the Archival Web. In A. Dekker (Ed.), Lost and Living (in) Archives: Collectively Shaping New Memories (pp. 27–40).

  • 34

    Steinhoff, J. (2024). Toward a political economy of synthetic data: A data-intensive capitalism that is not a surveillance capitalism? New Media & Society, 26(6), 3290–3306.

  • 35

    Tang, M. (2022). The challenge of the cloud: Between transnational capitalism and data sovereignty. Information, Communication & Society, 25(16), 2397–2411.

  • 36

    Tufte, E. R. (2007). The Visual Display of Quantitative Information (2nd ed.). Graphics Press.

  • 37

    Tyżlik-Carver, M. (2017). | Curator | Curating | the Curatorial | Not-Just-Art Curating. Genealogy of Posthuman Curating. Springerin.

  • 38

    Upward, F. (2005). The Records Continuum. In Archives. Chandos Publishing.

  • 39

    Wernimont, J. (2021). Quantification. In N. B. Thylstrup, D. Agostinho, A. Ring, C. D'Ignazio, & K. Veel (Eds.), Uncertain Archives: Critical Keywords for Big Data (pp. 427–431). The MIT Press.

Course Syllabus Readings

Required and recommended readings from the Curating Data course organized by module:

Module 1: Collecting

  • W36

    Dalton, C., & Thatcher, J. (2014). What Does a Critical Data Studies Look like, and Why Do We Care? Seven Points for a Critical Approach to 'Big Data'. Society and Space.

    Kitchin, R. (2022). Critical Data Studies. In The Data Revolution (pp. 21–41). SAGE Publications Ltd.

    Ackoff, R. L. (1989). From Data to Wisdom. Journal of Applied Systems Analysis, 16, 3–9.

    Rowley, J. (2007). The wisdom hierarchy: Representations of the DIKW hierarchy. Journal of Information Science.

    Tyżlik-Carver, M. (2017). | Curator | Curating | the Curatorial | Not-Just-Art Curating. Genealogy of Posthuman Curating. Springerin.

  • W37

    Kitchin, R. (2022). Introducing Data. In The Data Revolution (pp. 1–19). SAGE Publications Ltd.

    Acker, A. (2021). Metadata. In Uncertain Archives: Critical Keywords for Big Data (pp. 321–329). The MIT Press.

    Wernimont, J. (2021). Quantification. In Uncertain Archives: Critical Keywords for Big Data (pp. 427–431). The MIT Press.

  • W38

    Jordon, J., et al. (2022). Synthetic Data—What, why and how? arXiv.

    Steinhoff, J. (2024). Toward a political economy of synthetic data. New Media & Society, 26(6), 3290–3306.

  • W39

    Dourish, P. (2017). Spreadsheets and Spreadsheet Events in Organizational Life. In The Stuff of Bits (pp. 81–104). The MIT Press.

    Kitchin, R. (2022). Small Data and Data Infrastructures. In The Data Revolution (pp. 44–59). SAGE Publications Ltd.

    Flyverbom, M., & Murray, J. (2018). Datastructuring—Organizing and Curating Digital Traces into Action. Big Data & Society, 5(2).

Module 2: Categorizing

  • W40

    Bowker, G. C., & Star, S. L. (2000). Why Classifications Matter. In Sorting Things out: Classification and Its Consequences (pp. 319-326). The MIT Press.

    Ford, H., & Illadis, A. (2023). Wikidata as semantic infrastructure. Social Media + Society, 9(3).

    Clausen, B., Engel, D., & Wharton, G. (2023). Capturing Narrative and Data in Performance Art: The Joan Jonas Knowledge Base. In Reconstructing Performance Art (pp. 155–172). Routledge.

  • W41

    Crawford, K., & Paglen, T. (2021). Excavating AI: The politics of images in machine learning sets. AI & Society, 1105-1116.

    Das, S., & Lowe, M. (2018). Nature Read in Black and White: Decolonial Approaches to Interpreting Natural History Collections. Journal of Natural Science Collections, 4–14.

  • W43

    Seaver, N. (2022). Computing Taste: Algorithms and the Makers of Music Recommendation. University of Chicago Press. (Chapter 4: Hearing and Counting)

    Milano, S., Taddeo, M., & Floridi, L. (2020). Recommender Systems and Their Ethical Challenges. AI & Society, 35(4), 957–967.

Module 3: Displaying / Visualizing

  • W44

    Tufte, E. R. (2007). The Visual Display of Quantitative Information (2nd ed.). Graphics Press. (Chapter 1: Graphical Excellence)

    Cui, W. (2019). Visual Analytics: A Comprehensive Overview. IEEE Access, 7, 81555–81573.

  • W45

    D'Ignazio, C., & Klein, L. F. (2020). Chapter 3: On Rational, Scientific, Objective Viewpoints from Mythical, Imaginary, Impossible Standpoints. In Data Feminism.

    Rusert, B., & Battle-Baptiste, W. (Eds.). (2018). W. E. B. Du Bois's Data Portraits: Visualizing Black America. Princeton Architectural Press.

Module 4: Archiving

  • W46

    Sluis, K. (2017). Accumulate, Aggregate, Destroy. Database Fever and the Archival Web. In Lost and Living (in) Archives: Collectively Shaping New Memories (pp. 27–40).

    Indigenous Archives Collective. (2021). The Indigenous Archives Collective Position Statement on the Right of Reply to Indigenous Knowledges and Information Held in Archives. Archives & Manuscripts, 49(3), 244–252.

  • W47

    Saunavaara, J., Laine, A., & Salo, M. (2022). The Nordic societies and the development of the data centre industry. Technology in Society, 69, 101931.

    Tang, M. (2022). The challenge of the cloud: Between transnational capitalism and data sovereignty. Information, Communication & Society, 25(16), 2397–2411.